当前位置:67777.com > 产品测评 > 有关单相多铁性材料中的巨磁电耦合效应

有关单相多铁性材料中的巨磁电耦合效应

文章作者:产品测评 上传时间:2019-12-01

关联电子材料中的磁电阻效应具有重要的物理意义,在自旋电子学、自旋存储和磁传感等领域有着巨大的潜在应用价值。磁电阻效应是指材料的电阻对外磁场的响应,根据响应的不同,可以分为正磁电阻和负磁电阻效应。一般情况下,非磁性半导体或掺杂的磁性半导体材料、非磁性合金半金属(semi-metal)等材料可能表现出正磁阻效应(甚至巨正磁电阻效应),而钙钛矿氧化物铁磁材料由于外加磁场可以导致磁有序,一般表现出负磁电阻效应。虽然通过微结构设计,可能在钙钛矿氧化物中获得正磁电阻效应,但是至今没有在其中发现巨正磁电阻效应。

多铁性材料与磁电耦合效应蕴含着丰富的基础物理问题,具有重要的应用前景,是近年来凝聚态物理和材料科学的研究热点之一。多铁性是指铁电性、铁磁性、铁弹性等多种有序的共存。

南京微结构科学与技术协同创新中心、南京大学固体微结构物理国家重点实验室和现代工程与应用科学学院材料科学与工程系的张善涛教授和周健副教授通过合作,在双钙钛矿亚铁磁性氧化物Sr2CrWO6半金属(half-metal)薄膜中,实现了巨正磁电阻效应。该工作通过脉冲激光沉积法,制备了一系列高质量的Sr2CrWO6薄膜。这些薄膜在低温下表现出厚度依赖的巨正磁电阻效应,厚度越薄,正磁电阻效应越大。其中12纳米厚的薄膜,在2 K和7 Tesla的条件下,正磁电阻达到17200% 。本工作提出了两种可能的物理机制:其一是外加磁场破坏Sr2CrWO6半金属薄膜中的亚铁磁长程有序,导致畴界的增加,而增加的畴界会导致电阻的增大;其二是高质量Sr2CrWO6半金属薄膜中的高载流子迁移率可能对巨正磁电阻有贡献。

多铁性材料分为复合材料和单相材料两类,复合材料的磁电耦合是利用界面效应实现的间接耦合,单相材料的磁电耦合是本征的体效应。人们已发现种类繁多的单相多铁性材料,已知的单相多铁性材料的磁电耦合效应通常比较微弱,限制了单相多铁性材料在未来磁电子学器件中的应用,如何大幅度提高单相材料的磁电耦合效应成为该领域面临的重大挑战。近日,中国科学院物理研究所/北京凝聚态物理国家实验室研究员孙阳等在一种Y-型六角铁氧体Ba0.4Sr1.6Mg2Fe12O22中实现了巨大的磁电耦合效应,获得了高达33000ps/m的正磁电耦合系数和32000ps/m的逆磁电耦合系数,创造了单相材料磁电耦合效应的新世界记录。

本工作以Giant positive magnetoresistance in half-metallic double perovskite Sr2CrWO6thin films 为题,发表于Science Advances 3, e1701473 。论文的第一作者是现代工程与应用科学学院的博士生张骥,通讯作者是张善涛教授和周健副教授。该工作得到了科技部973计划、国家自然科学基金和南京大学“登峰计划B”的资助,部分实验测试工作得到了中国科学技术大学国家同步辐射实验室和中国科学院强磁场科学中心的支持。

六角铁氧体是一类具有六角晶系的铁基氧化物,按照结构单元的不同,可进一步划分为M, W, X, Y, Z,和U型六角铁氧体。由于存在多种磁性相互作用的竞争,在六角铁氧体中可以通过部分元素替换产生丰富的非共线螺旋磁结构。对一些特定的螺旋磁结构,非共线的自旋之间可以通过逆Dzyaloshinskii-Moriya相互作用产生宏观电极化,导致磁有序驱动的第二类多铁性与磁电耦合效应。在以前的研究中,已在一些六角铁氧体中观察到较强的磁电耦合效应,但是,如何在六角铁氧体中进一步实现巨大的磁电耦合效应,缺乏清晰的认识和思路。为理解Y-型六角铁氧体Ba0.4Sr1.6Mg2Fe12O22中巨磁电耦合效应的物理起源,科研人员合成出Ba2-xSrxMg2Fe12O22 (0.0≤x≤1.6) 一系列单晶样品,系统研究了其宏观磁性和磁电耦合效应随Sr含量的变化关系。同时,孙阳研究组与美国橡树岭国家实验室科研人员合作,利用中子散射技术详细研究了这一系列单晶样品的磁结构,给出了Ba2-xSrxMg2Fe12O22体系中圆锥状螺旋磁结构随Sr含量及外加磁场变化的相图。据研究结果,六角铁氧体中磁电耦合效应的强度与自旋锥的对称性密切相关:当自旋锥的对称性从四重对称性降低到二重对称性时,在外加磁场驱动下自旋锥可以发生180度翻转;同时,自旋结构产生的电极化也会随之发生180度反向。通过元素替换调控磁各向异性使这一相变发生在零磁场附近,导致巨大的磁电耦合系数。

本文由67777.com发布于产品测评,转载请注明出处:有关单相多铁性材料中的巨磁电耦合效应

关键词: